Papers
Topics
Authors
Recent
Search
2000 character limit reached

Quantitative statistical stability for the equilibrium states of piecewise partially hyperbolic maps

Published 13 Aug 2020 in math.DS | (2008.05679v7)

Abstract: We consider a class of endomorphisms that contains a set of piecewise partially hyperbolic dynamics semi-conjugated to non-uniformly expanding maps. Our goal is to study a class of endomorphisms that preserve a foliation that is almost everywhere uniformly contracted, with possible discontinuity sets parallel to the contracting direction. We apply the spectral gap property and the $\zeta$-H\"older regularity of the disintegration of its equilibrium states to prove a quantitative statistical stability statement. More precisely, under deterministic perturbations of the system of size $\delta$, we show that the $F$-invariant measure varies continuously with respect to a suitable anisotropic norm. Moreover, we prove that for certain interesting classes of perturbations, its modulus of continuity is $O(\delta\zeta \log \delta)$. This article has been accepted for publication in the Discrete and Continuous Dynamical Systems journal.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.