Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Evidence bounds in singular models: probabilistic and variational perspectives (2008.04537v1)

Published 11 Aug 2020 in math.ST and stat.TH

Abstract: The marginal likelihood or evidence in Bayesian statistics contains an intrinsic penalty for larger model sizes and is a fundamental quantity in Bayesian model comparison. Over the past two decades, there has been steadily increasing activity to understand the nature of this penalty in singular statistical models, building on pioneering work by Sumio Watanabe. Unlike regular models where the Bayesian information criterion (BIC) encapsulates a first-order expansion of the logarithm of the marginal likelihood, parameter counting gets trickier in singular models where a quantity called the real log canonical threshold (RLCT) summarizes the effective model dimensionality. In this article, we offer a probabilistic treatment to recover non-asymptotic versions of established evidence bounds as well as prove a new result based on the Gibbs variational inequality. In particular, we show that mean-field variational inference correctly recovers the RLCT for any singular model in its canonical or normal form. We additionally exhibit sharpness of our bound by analyzing the dynamics of a general purpose coordinate ascent algorithm (CAVI) popularly employed in variational inference.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube