On a Stirling-Whitney-Riordan triangle (2008.04120v4)
Abstract: Based on the Stirling triangle of the second kind, the Whitney triangle of the second kind and one triangle of Riordan, we study a Stirling-Whitney-Riordan triangle $[T_{n,k}]{n,k}$ satisfying the recurrence relation: \begin{eqnarray*} T{n,k}&=&(b_1k+b_2)T_{n-1,k-1}+[(2\lambda b_1+a_1)k+a_2+\lambda( b_1+b_2)] T_{n-1,k}+\ &&\lambda(a_1+\lambda b_1)(k+1)T_{n-1,k+1}, \end{eqnarray*} where initial conditions $T_{n,k}=0$ unless $0\le k\le n$ and $T_{0,0}=1$. We prove that the Stirling-Whitney-Riordan triangle $[T_{n,k}]{n,k}$ is $\textbf{x}$-totally positive with $\textbf{x}=(a_1,a_2,b_1,b_2,\lambda)$. We show that the row-generating function $T_n(q)$ has only real zeros and the Tur\'{a}n-type polynomial $T{n+1}(q)T_{n-1}(q)-T2_n(q)$ is stable. We also present explicit formulae for $T_{n,k}$ and the exponential generating function of $T_n(q)$ and give a Jacobi continued fraction expansion for the ordinary generating function of $T_n(q)$. Furthermore, we get the $\textbf{x}$-Stieltjes moment property and $3$-$\textbf{x}$-log-convexity of $T_n(q)$ and show that the triangular convolution $z_n=\sum_{i=0}nT_{n,i}x_iy_{n-i}$ preserves Stieltjes moment property of sequences. Finally, for the first column $(T_{n,0}){n\geq0}$, we derive some properties similar to those of $(T_n(q)){n\geq0}.$
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.