Papers
Topics
Authors
Recent
2000 character limit reached

MHSA-Net: Multi-Head Self-Attention Network for Occluded Person Re-Identification (2008.04015v4)

Published 10 Aug 2020 in cs.CV

Abstract: This paper presents a novel person re-identification model, named Multi-Head Self-Attention Network (MHSA-Net), to prune unimportant information and capture key local information from person images. MHSA-Net contains two main novel components: Multi-Head Self-Attention Branch (MHSAB) and Attention Competition Mechanism (ACM). The MHSAB adaptively captures key local person information, and then produces effective diversity embeddings of an image for the person matching. The ACM further helps filter out attention noise and non-key information. Through extensive ablation studies, we verified that the Multi-Head Self-Attention Branch (MHSAB) and Attention Competition Mechanism (ACM) both contribute to the performance improvement of the MHSA-Net. Our MHSA-Net achieves competitive performance in the standard and occluded person Re-ID tasks.

Citations (63)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.