Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

$\mathcal Z$-stability of $\mathrm{C}(X)\rtimesΓ$ (2008.03357v1)

Published 7 Aug 2020 in math.OA and math.DS

Abstract: Let $(X, \Gamma)$ be a free and minimal topological dynamical system, where $X$ is a separable compact Hausdorff space and $\Gamma$ is a countable infinite discrete amenable group. It is shown that if $(X, \Gamma)$ has the Uniform Rokhlin Property and Cuntz comparison of open sets, then $\mathrm{mdim}(X, \Gamma)=0$ implies that $(\mathrm{C}(X) \rtimes\Gamma)\otimes\mathcal Z \cong \mathrm{C}(X) \rtimes\Gamma$, where $\mathrm{mdim}$ is the mean dimension and $\mathcal Z$ is the Jiang-Su algebra. In particular, in this case, $\mathrm{mdim}(X, \Gamma)=0$ implies that the C*-algebra $\mathrm{C}(X) \rtimes\Gamma$ is classified by the Elliott invariant.

Summary

We haven't generated a summary for this paper yet.