Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 94 tok/s
GPT OSS 120B 476 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

Bayesian causal inference for count potential outcomes (2008.03271v1)

Published 7 Aug 2020 in stat.ME

Abstract: The literature for count modeling provides useful tools to conduct causal inference when outcomes take non-negative integer values. Applied to the potential outcomes framework, we link the Bayesian causal inference literature to statistical models for count data. We discuss the general architectural considerations for constructing the predictive posterior of the missing potential outcomes. Special considerations for estimating average treatment effects are discussed, some generalizing certain relationships and some not yet encountered in the causal inference literature.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.