Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 161 tok/s Pro
2000 character limit reached

A Potential Tale of Two by Two Tables from Completely Randomized Experiments (1501.02389v1)

Published 10 Jan 2015 in math.ST and stat.TH

Abstract: Causal inference in completely randomized treatment-control studies with binary outcomes is discussed from Fisherian, Neymanian and Bayesian perspectives, using the potential outcomes framework. A randomization-based justification of Fisher's exact test is provided. Arguing that the crucial assumption of constant causal effect is often unrealistic, and holds only for extreme cases, some new asymptotic and Bayesian inferential procedures are proposed. The proposed procedures exploit the intrinsic non-additivity of unit-level causal effects, can be applied to linear and non-linear estimands, and dominate the existing methods, as verified theoretically and also through simulation studies.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.