Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Game-Theoretic Upper Expectations for Discrete-Time Finite-State Uncertain Processes (2008.03133v4)

Published 6 Aug 2020 in math.PR

Abstract: Game-theoretic upper expectations are joint (global) probability models that mathematically describe the behaviour of uncertain processes in terms of supermartingales; capital processes corresponding to available betting strategies. Compared to (the more common) measure-theoretic expectation functionals, they are not bounded to restrictive assumptions such as measurability or precision, yet succeed in preserving, or even generalising many of their fundamental properties. We focus on a discrete-time setting where local state spaces are finite and, in this specific context, build on the existing work of Shafer and Vovk; the main developers of the framework of game-theoretic upper expectations. In a first part, we study Shafer and Vovk's characterisation of a local upper expectation and show how it is related to Walley's behavioural notion of coherence. The second part consists in a study of game-theoretic upper expectations on a more global level, where several alternative definitions, as well as a broad range of properties are derived, e.g. the law of iterated upper expectations, compatibility with local models, coherence properties,... Our main contribution, however, concerns the continuity behaviour of these operators. We prove continuity with respect to non-increasing sequences of so-called lower cuts and continuity with respect to non-increasing sequences of finitary functions. We moreover show that the game-theoretic upper expectation is uniquely determined by its values on the domain of bounded below limits of finitary functions, and additionally show that, for any such limit, the limiting sequence can be constructed in such a way that the game-theoretic upper expectation is continuous with respect to this particular sequence.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.