Papers
Topics
Authors
Recent
Search
2000 character limit reached

Sharp upper diameter bounds for compact shrinking Ricci solitons

Published 6 Aug 2020 in math.DG | (2008.02893v2)

Abstract: We give a sharp upper diameter bound for a compact shrinking Ricci soliton in terms of its scalar curvature integral and the Perelman's entropy functional. The sharp cases could occur at round spheres. The proof mainly relies on a sharp logarithmic Sobolev inequality of gradient shrinking Ricci solitons and a Vitali-type covering argument.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.