Papers
Topics
Authors
Recent
2000 character limit reached

Topological and symmetry-enriched random quantum critical points

Published 5 Aug 2020 in cond-mat.str-el, cond-mat.dis-nn, cond-mat.stat-mech, and quant-ph | (2008.02285v2)

Abstract: We study how symmetry can enrich strong-randomness quantum critical points and phases, and lead to robust topological edge modes coexisting with critical bulk fluctuations. These are the disordered analogues of gapless topological phases. Using real-space and density matrix renormalization group approaches, we analyze the boundary and bulk critical behavior of such symmetry-enriched random quantum spin chains. We uncover a new class of symmetry-enriched infinite randomness fixed points: while local bulk properties are indistinguishable from conventional random singlet phases, nonlocal observables and boundary critical behavior are controlled by a different renormalization group fixed point. We also illustrate how such new quantum critical points emerge naturally in Floquet systems.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.