Topological and symmetry-enriched random quantum critical points (2008.02285v2)
Abstract: We study how symmetry can enrich strong-randomness quantum critical points and phases, and lead to robust topological edge modes coexisting with critical bulk fluctuations. These are the disordered analogues of gapless topological phases. Using real-space and density matrix renormalization group approaches, we analyze the boundary and bulk critical behavior of such symmetry-enriched random quantum spin chains. We uncover a new class of symmetry-enriched infinite randomness fixed points: while local bulk properties are indistinguishable from conventional random singlet phases, nonlocal observables and boundary critical behavior are controlled by a different renormalization group fixed point. We also illustrate how such new quantum critical points emerge naturally in Floquet systems.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.