Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Backward Simulation for Sets of Trajectories (2008.02051v2)

Published 5 Aug 2020 in eess.SP

Abstract: This paper presents a solution for recovering full trajectory information, via the calculation of the posterior of the set of trajectories, from a sequence of multitarget (unlabelled) filtering densities and the multitarget dynamic model. Importantly, the proposed solution opens an avenue of trajectory estimation possibilities for multitarget filters that do not explicitly estimate trajectories. In this paper, we first derive a general multitrajectory forward-backward smoothing equation based on sets of trajectories and the random finite set framework. Then we show how to sample sets of trajectories using backward simulation when the multitarget filtering densities are multi-Bernoulli processes. The proposed approach is demonstrated in a simulation study.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube