Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 119 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 423 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Implicit Saliency in Deep Neural Networks (2008.01874v1)

Published 4 Aug 2020 in cs.CV and cs.NE

Abstract: In this paper, we show that existing recognition and localization deep architectures, that have not been exposed to eye tracking data or any saliency datasets, are capable of predicting the human visual saliency. We term this as implicit saliency in deep neural networks. We calculate this implicit saliency using expectancy-mismatch hypothesis in an unsupervised fashion. Our experiments show that extracting saliency in this fashion provides comparable performance when measured against the state-of-art supervised algorithms. Additionally, the robustness outperforms those algorithms when we add large noise to the input images. Also, we show that semantic features contribute more than low-level features for human visual saliency detection.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com