Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Eigenstate thermalization for observables that break Hamiltonian symmetries and its counterpart in interacting integrable systems (2008.01085v2)

Published 3 Aug 2020 in cond-mat.stat-mech, cond-mat.quant-gas, and quant-ph

Abstract: We study the off-diagonal matrix elements of observables that break the translational symmetry of a spin-chain Hamiltonian, and as such connect energy eigenstates from different total quasimomentum sectors. We consider quantum-chaotic and interacting integrable points of the Hamiltonian, and focus on average energies at the center of the spectrum. In the quantum-chaotic model, we find that there is eigenstate thermalization; specifically, the matrix elements are Gaussian distributed with a variance that is a smooth function of $\omega=E_{\alpha}-E_{\beta}$ ({$E_{\alpha}$} are the eigenenergies) and scales as $1/D$ ($D$ is the Hilbert space dimension). In the interacting integrable model, we find that the matrix elements exhibit a skewed log-normal-like distribution and have a variance that is also a smooth function of $\omega$ that scales as $1/D$. We study in detail the low-frequency behavior of the variance of the matrix elements to unveil the regimes in which it exhibits diffusive or ballistic scaling. We show that in the quantum-chaotic model the behavior of the variance is qualitatively similar for matrix elements that connect eigenstates from the same versus different quasimomentum sectors. We also show that this is not the case in the interacting integrable model for observables whose translationally invariant counterpart does not break integrability if added as a perturbation to the Hamiltonian.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.