Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4 33 tok/s Pro
2000 character limit reached

Combinatorial Geometry of Threshold-Linear Networks (2008.01032v1)

Published 3 Aug 2020 in math.CO and q-bio.NC

Abstract: The architecture of a neural network constrains the potential dynamics that can emerge. Some architectures may only allow for a single dynamic regime, while others display a great deal of flexibility with qualitatively different dynamics that can be reached by modulating connection strengths. In this work, we develop novel mathematical techniques to study the dynamic constraints imposed by different network architectures in the context of competitive threshold-linear networks (TLNs). Any given TLN is naturally characterized by a hyperplane arrangement in $\mathbb{R}n$, and the combinatorial properties of this arrangement determine the pattern of fixed points of the dynamics. This observation enables us to recast the question of network flexibility in the language of oriented matroids, allowing us to employ tools and results from this theory in order to characterize the different dynamic regimes a given architecture can support. In particular, fixed points of a TLN correspond to cocircuits of an associated oriented matroid; and mutations of the matroid correspond to bifurcations in the collection of fixed points. As an application, we provide a complete characterization of all possible sets of fixed points that can arise in networks through size $n=3$, together with descriptions of how to modulate synaptic strengths of the network in order to access the different dynamic regimes. These results provide a framework for studying the possible computational roles of various motifs observed in real neural networks.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.