Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Generalized additive models to capture the death rates in Canada COVID-19 (2008.01030v1)

Published 5 Jul 2020 in stat.AP, physics.soc-ph, and q-bio.PE

Abstract: To capture the death rates and strong weekly, biweekly and probably monthly patterns in the Canada COVID-19, we utilize the generalized additive models in the absence of direct statistically based measurement of infection rates. By examining the death rates of Canada in general and Quebec, Ontario and Alberta in particular, one can easily figured out that there are substantial overdispersion relative to the Poisson so that the negative binomial distribution is an appropriate choice for the analysis. Generalized additive models (GAMs) are one of the main modeling tools for data analysis. GAMs can efficiently combine different types of fixed, random and smooth terms in the linear predictor of a regression model to account for different types of effects. GAMs are a semi-parametric extension of the generalized linear models (GLMs), used often for the case when there is no a priori reason for choosing a particular response function such as linear, quadratic, etc. and need the data to 'speak for themselves'. GAMs do this via the smoothing functions and take each predictor variable in the model and separate it into sections delimited by 'knots', and then fit polynomial functions to each section separately, with the constraint that there are no links at the knots - second derivatives of the separate functions are equal at the knots.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.