Papers
Topics
Authors
Recent
Search
2000 character limit reached

Combining Breast Cancer Risk Prediction Models

Published 31 Jul 2020 in stat.AP and stat.ME | (2008.01019v1)

Abstract: Accurate risk stratification is key to reducing cancer morbidity through targeted screening and preventative interventions. Numerous breast cancer risk prediction models have been developed, but they often give predictions with conflicting clinical implications. Integrating information from different models may improve the accuracy of risk predictions, which would be valuable for both clinicians and patients. BRCAPRO and BCRAT are two widely used models based on largely complementary sets of risk factors. BRCAPRO is a Bayesian model that uses detailed family history information to estimate the probability of carrying a BRCA1/2 mutation, as well as future risk of breast and ovarian cancer, based on mutation prevalence and penetrance (age-specific probability of developing cancer given genotype). BCRAT uses a relative hazard model based on first-degree family history and non-genetic risk factors. We consider two approaches for combining BRCAPRO and BCRAT: 1) modifying the penetrance functions in BRCAPRO using relative hazard estimates from BCRAT, and 2) training an ensemble model that takes as input BRCAPRO and BCRAT predictions. We show that the combination models achieve performance gains over BRCAPRO and BCRAT in simulations and data from the Cancer Genetics Network.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.