Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tensorizing GAN with High-Order Pooling for Alzheimer's Disease Assessment (2008.00748v1)

Published 3 Aug 2020 in cs.LG, eess.IV, and stat.ML

Abstract: It is of great significance to apply deep learning for the early diagnosis of Alzheimer's Disease (AD). In this work, a novel tensorizing GAN with high-order pooling is proposed to assess Mild Cognitive Impairment (MCI) and AD. By tensorizing a three-player cooperative game based framework, the proposed model can benefit from the structural information of the brain. By incorporating the high-order pooling scheme into the classifier, the proposed model can make full use of the second-order statistics of the holistic Magnetic Resonance Imaging (MRI) images. To the best of our knowledge, the proposed Tensor-train, High-pooling and Semi-supervised learning based GAN (THS-GAN) is the first work to deal with classification on MRI images for AD diagnosis. Extensive experimental results on Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset are reported to demonstrate that the proposed THS-GAN achieves superior performance compared with existing methods, and to show that both tensor-train and high-order pooling can enhance classification performance. The visualization of generated samples also shows that the proposed model can generate plausible samples for semi-supervised learning purpose.

Citations (101)

Summary

We haven't generated a summary for this paper yet.