Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 43 tok/s
GPT-5 High 49 tok/s Pro
GPT-4o 108 tok/s
GPT OSS 120B 468 tok/s Pro
Kimi K2 243 tok/s Pro
2000 character limit reached

Unsupervised Discovery of Recurring Speech Patterns Using Probabilistic Adaptive Metrics (2008.00731v1)

Published 3 Aug 2020 in eess.AS and cs.CL

Abstract: Unsupervised spoken term discovery (UTD) aims at finding recurring segments of speech from a corpus of acoustic speech data. One potential approach to this problem is to use dynamic time warping (DTW) to find well-aligning patterns from the speech data. However, automatic selection of initial candidate segments for the DTW-alignment and detection of "sufficiently good" alignments among those require some type of pre-defined criteria, often operationalized as threshold parameters for pair-wise distance metrics between signal representations. In the existing UTD systems, the optimal hyperparameters may differ across datasets, limiting their applicability to new corpora and truly low-resource scenarios. In this paper, we propose a novel probabilistic approach to DTW-based UTD named as PDTW. In PDTW, distributional characteristics of the processed corpus are utilized for adaptive evaluation of alignment quality, thereby enabling systematic discovery of pattern pairs that have similarity what would be expected by coincidence. We test PDTW on Zero Resource Speech Challenge 2017 datasets as a part of 2020 implementation of the challenge. The results show that the system performs consistently on all five tested languages using fixed hyperparameters, clearly outperforming the earlier DTW-based system in terms of coverage of the detected patterns.

Citations (25)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube