Papers
Topics
Authors
Recent
Search
2000 character limit reached

Video Question Answering on Screencast Tutorials

Published 2 Aug 2020 in cs.CL, cs.AI, cs.CV, and cs.LG | (2008.00544v1)

Abstract: This paper presents a new video question answering task on screencast tutorials. We introduce a dataset including question, answer and context triples from the tutorial videos for a software. Unlike other video question answering works, all the answers in our dataset are grounded to the domain knowledge base. An one-shot recognition algorithm is designed to extract the visual cues, which helps enhance the performance of video question answering. We also propose several baseline neural network architectures based on various aspects of video contexts from the dataset. The experimental results demonstrate that our proposed models significantly improve the question answering performances by incorporating multi-modal contexts and domain knowledge.

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.