Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Contextual Document Similarity for Content-based Literature Recommender Systems (2008.00202v1)

Published 1 Aug 2020 in cs.IR and cs.DL

Abstract: To cope with the ever-growing information overload, an increasing number of digital libraries employ content-based recommender systems. These systems traditionally recommend related documents with the help of similarity measures. However, current document similarity measures simply distinguish between similar and dissimilar documents. This simplification is especially crucial for extensive documents, which cover various facets of a topic and are often found in digital libraries. Still, these similarity measures neglect to what facet the similarity relates. Therefore, the context of the similarity remains ill-defined. In this doctoral thesis, we explore contextual document similarity measures, i.e., methods that determine document similarity as a triple of two documents and the context of their similarity. The context is here a further specification of the similarity. For example, in the scientific domain, research papers can be similar with respect to their background, methodology, or findings. The measurement of similarity in regards to one or more given contexts will enhance recommender systems. Namely, users will be able to explore document collections by formulating queries in terms of documents and their contextual similarities. Thus, our research objective is the development and evaluation of a recommender system based on contextual similarity. The underlying techniques will apply established similarity measures and as well as neural approaches while utilizing semantic features obtained from links between documents and their text.

Citations (10)

Summary

We haven't generated a summary for this paper yet.