Quadratic sparse domination and Weighted Estimates for non-integral Square Functions (2007.15928v1)
Abstract: We prove a quadratic sparse domination result for general non-integral square functions $S$. That is, we prove an estimate of the form \begin{equation*} \int_{M} (S f){2} g \, \mathrm{d}\mu \le c \sum_{P \in \mathcal{S}} \left(\frac{1}{\lvert 5P \rvert}\int_{5 P} \lvert f\rvert{p_{0}} \, \mathrm{d}\mu\right){2/p_{0}} \left(\frac{1}{\lvert 5P \rvert} \int_{5 P} \lvert g\rvert{q_{0}}\,\mathrm{d}\mu\right){1/q_{0}^} \lvert P\rvert, \end{equation*} where $q_{0}{*}$ is the H\"{o}lder conjugate of $q_{0}/2$, $M$ is the underlying doubling space and $\mathcal{S}$ is a sparse collection of cubes on $M$. Our result will cover both square functions associated with divergence form elliptic operators and those associated with the Laplace-Beltrami operator. This sparse domination allows us to derive optimal norm estimates in the weighted space $L{p}(w)$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.