Papers
Topics
Authors
Recent
2000 character limit reached

A note on the strong maximum principle for fully nonlinear equations on Riemannian manifolds (2007.15448v1)

Published 30 Jul 2020 in math.AP and math.DG

Abstract: We investigate strong maximum (and minimum) principles for fully nonlinear second order equations on Riemannian manifolds that are non-totally degenerate and satisfy appropriate scaling conditions. Our results apply to a large class of nonlinear operators, among which Pucci's extremal operators, some singular operators like those modeled on the $p$- and $\infty$-Laplacian, and mean curvature type problems. As a byproduct, we establish new strong comparison principles for some second order uniformly elliptic problems when the manifold has nonnegative sectional curvature.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.