Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Black-box Adversarial Sample Generation Based on Differential Evolution (2007.15310v1)

Published 30 Jul 2020 in cs.LG, cs.CR, cs.CV, and stat.ML

Abstract: Deep Neural Networks (DNNs) are being used in various daily tasks such as object detection, speech processing, and machine translation. However, it is known that DNNs suffer from robustness problems -- perturbed inputs called adversarial samples leading to misbehaviors of DNNs. In this paper, we propose a black-box technique called Black-box Momentum Iterative Fast Gradient Sign Method (BMI-FGSM) to test the robustness of DNN models. The technique does not require any knowledge of the structure or weights of the target DNN. Compared to existing white-box testing techniques that require accessing model internal information such as gradients, our technique approximates gradients through Differential Evolution and uses approximated gradients to construct adversarial samples. Experimental results show that our technique can achieve 100% success in generating adversarial samples to trigger misclassification, and over 95% success in generating samples to trigger misclassification to a specific target output label. It also demonstrates better perturbation distance and better transferability. Compared to the state-of-the-art black-box technique, our technique is more efficient. Furthermore, we conduct testing on the commercial Aliyun API and successfully trigger its misbehavior within a limited number of queries, demonstrating the feasibility of real-world black-box attack.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Junyu Lin (14 papers)
  2. Lei Xu (172 papers)
  3. Yingqi Liu (28 papers)
  4. Xiangyu Zhang (328 papers)
Citations (33)

Summary

We haven't generated a summary for this paper yet.