Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Norm-attaining lattice homomorphisms (2007.14907v1)

Published 29 Jul 2020 in math.FA

Abstract: In this paper we study the structure of the set $\mbox{Hom}(X,\mathbb{R})$ of all lattice homomorphisms from a Banach lattice $X$ into $\mathbb{R}$. Using the relation among lattice homomorphisms and disjoint families, we prove that the topological dual of the free Banach lattice $FBL(A)$ generated by a set $A$ contains a disjoint family of cardinality $2{|A|}$, answering a question of B. de Pagter and A.W. Wickstead. We also deal with norm-attaining lattice homomorphisms. For classical Banach lattices, as $c_0$, $L_p$-, and $C(K)$-spaces, every lattice homomorphism on it attains its norm, which shows, in particular, that there is no James theorem for this class of functions. We prove that, indeed, every lattice homomorphism on $X$ and $C(K,X)$ attains its norm whenever $X$ has order continuous norm. On the other hand, we provide what seems to be the first example in the literature of a lattice homomorphism which does not attain its norm. In general, we study the existence and characterization of lattice homomorphisms not attaining their norm in free Banach lattices. As a consequence, it is shown that no Bishop-Phelps type theorem holds true in the Banach lattice setting, i.e. not every lattice homomorphism can be approximated by norm-attaining lattice homomorphisms.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube