Isoresidual fibration and resonance arrangements
Abstract: The stratum $\mathcal{H}(a,-b_{1},\dots,-b_{p})$ of meromorphic $1$-forms with a zero of order $a$ and poles of orders $b_{1},\dots,b_{p}$ on the Riemann sphere has a map, the isoresidual fibration, defined by assigning to any differential its residues at the poles. We show that above the complement of a hyperplane arrangement, the resonance arrangement, the isoresidual fibration is an unramified cover of degree $\frac{a!}{(a+2-p)!}$. Moreover, the monodromy of the fibration is computed for strata with at most three poles and a system of generators and relations is given for all strata. These results are obtained by associating to special differentials of the strata a tree, and by studying the relationship between the geometric properties of the differentials and the combinatorial properties of these trees.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.