Papers
Topics
Authors
Recent
2000 character limit reached

Very high-order Cartesian-grid finite difference method on arbitrary geometries

Published 29 Jul 2020 in physics.comp-ph, cs.NA, and math.NA | (2007.14680v1)

Abstract: An arbitrary order finite difference method for curved boundary domains with Cartesian grid is proposed. The technique handles in a universal manner Dirichlet, Neumann or Robin condition. We introduce the Reconstruction Off-site Data (ROD) method, that transfers in polynomial functions the information located on the physical boundary. Three major advantages are: (1) a simple description of the physical boundary with Robin condition using a collection of points; (2) no analytical expression (implicit or explicit) is required, particularly the ghost cell centroids' projection are not needed; (3) we split up into two independent machineries the boundary treatment and the resolution of the interior problem, coupled by the the ghost cell values. Numerical evidences based on the simple 2D convection-diffusion operators are presented to prove the ability of the method to reach at least the 6th-order with arbitrary smooth domains.

Citations (13)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.