Papers
Topics
Authors
Recent
2000 character limit reached

Gradient estimates for weighted $p$-Laplacian equations on Riemannian manifolds with a Sobolev inequality and integral Ricci bounds

Published 29 Jul 2020 in math.DG | (2007.14669v2)

Abstract: In this paper, we consider the non-linear general $p$-Laplacian equation $\Delta_{p,f}u+F(u)=0$ for a smooth function $F$ on smooth metric measure spaces. Assume that a Sobolev inequality holds true on $M$ and an integral Ricci curvature is small, we first prove a local gradient estimate for the equation. Then, as its applications, we prove several Liouville type results on manifolds with lower bounds of Ricci curvature. We also derive new local gradient estimates provided that the integral Ricci curvature is small enough.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.