Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Few-Shot Keyword Spotting With Prototypical Networks (2007.14463v1)

Published 25 Jul 2020 in eess.AS, cs.LG, and cs.SD

Abstract: Recognizing a particular command or a keyword, keyword spotting has been widely used in many voice interfaces such as Amazon's Alexa and Google Home. In order to recognize a set of keywords, most of the recent deep learning based approaches use a neural network trained with a large number of samples to identify certain pre-defined keywords. This restricts the system from recognizing new, user-defined keywords. Therefore, we first formulate this problem as a few-shot keyword spotting and approach it using metric learning. To enable this research, we also synthesize and publish a Few-shot Google Speech Commands dataset. We then propose a solution to the few-shot keyword spotting problem using temporal and dilated convolutions on prototypical networks. Our comparative experimental results demonstrate keyword spotting of new keywords using just a small number of samples.

Citations (30)

Summary

We haven't generated a summary for this paper yet.