Papers
Topics
Authors
Recent
2000 character limit reached

Data-Driven Learning of Reduced-order Dynamics for a Parametrized Shallow Water Equation

Published 28 Jul 2020 in math.NA and cs.NA | (2007.14079v2)

Abstract: This paper discusses a non-intrusive data-driven model order reduction method that learns low-dimensional dynamical models for a parametrized shallow water equation. We consider the shallow water equation in non-traditional form (NTSWE). We focus on learning low-dimensional models in a non-intrusive way. That means, we assume not to have access to a discretized form of the NTSWE in any form. Instead, we have snapshots that are obtained using a black-box solver. Consequently, we aim at learning reduced-order models only from the snapshots. Precisely, a reduced-order model is learnt by solving an appropriate least-squares optimization problem in a low-dimensional subspace. Furthermore, we discuss computational challenges that particularly arise from the optimization problem being ill-conditioned. Moreover, we extend the non-intrusive model order reduction framework to a parametric case where we make use of the parameter dependency at the level of the partial differential equation. We illustrate the efficiency of the proposed non-intrusive method to construct reduced-order models for NTSWE and compare it with an intrusive method (proper orthogonal decomposition). We furthermore discuss the predictive capabilities of both models outside the range of the training data.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.