2000 character limit reached
Finslerian geodesics on Fréchet manifolds (2007.13832v1)
Published 27 Jul 2020 in math.DG
Abstract: We establish a framework, namely, nuclear bounded Fr\'{e}chet manifolds endowed with Riemann-Finsler structures to study geodesic curves on certain infinite dimensional manifolds such as the manifold of Riemannian metrics on a closed manifold. We prove on these manifolds geodesics exist locally and they are length minimizing in a sense. Moreover, we show that a curve on these manifolds is geodesic if and only if it satisfies a collection of Euler-Lagrange equations. As an application, without much difficulty, we prove that the solution to the Ricci flow on an Einstein manifold is not geodesic.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.