Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Gauss-Newton-Like Hessian Approximation for Economic NMPC (2007.13519v2)

Published 27 Jul 2020 in eess.SY and cs.SY

Abstract: Economic Model Predictive Control (EMPC) has recently become popular because of its ability to control constrained nonlinear systems while explicitly optimizing a prescribed performance criterion. Large performance gains have been reported for many applications and closed-loop stability has been recently investigated. However, computational performance still remains an open issue and only few contributions have proposed real-time algorithms tailored to EMPC. We perform a step towards computationally cheap algorithms for EMPC by proposing a new positive-definite Hessian approximation which does not hinder fast convergence and is suitable for being used within the real-time iteration (RTI) scheme. We provide two simulation examples to demonstrate the effectiveness of RTI-based EMPC relying on the proposed Hessian approximation.

Citations (5)

Summary

We haven't generated a summary for this paper yet.