Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DCDIR: A Deep Cross-Domain Recommendation System for Cold Start Users in Insurance Domain (2007.13316v1)

Published 27 Jul 2020 in cs.IR and cs.SI

Abstract: Internet insurance products are apparently different from traditional e-commerce goods for their complexity, low purchasing frequency, etc.So, cold start problem is even worse. In traditional e-commerce field, several cross-domain recommendation (CDR) methods have been studied to infer preferences of cold start users based on their preferences in other domains. However, these CDR methods could not be applied into insurance domain directly due to product complexity. In this paper, we propose a Deep Cross Domain Insurance Recommendation System (DCDIR) for cold start users. Specifically, we first learn more effective user and item latent features in both domains. In target domain, given the complexity of insurance products, we design meta path based method over insurance product knowledge graph. In source domain, we employ GRU to model user dynamic interests. Then we learn a feature mapping function by multi-layer perceptions. We apply DCDIR on our company datasets, and show DCDIR significantly outperforms the state-of-the-art solutions.

Citations (55)

Summary

We haven't generated a summary for this paper yet.