Papers
Topics
Authors
Recent
Search
2000 character limit reached

Distributional Analysis

Published 26 Jul 2020 in cs.DS | (2007.13240v1)

Abstract: In distributional or average-case analysis, the goal is to design an algorithm with good-on-average performance with respect to a specific probability distribution. Distributional analysis can be useful for the study of general-purpose algorithms on "non-pathological" inputs, and for the design of specialized algorithms in applications in which there is detailed understanding of the relevant input distribution. For some problems, however, pure distributional analysis encourages "overfitting" an algorithmic solution to a particular distributional assumption and a more robust analysis framework is called for. This chapter presents numerous examples of the pros and cons of distributional analysis, highlighting some of its greatest hits while also setting the stage for the hybrids of worst- and average-case analysis studied in later chapters.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.