Papers
Topics
Authors
Recent
Search
2000 character limit reached

Bayesian Dynamic Mapping of an Exo-Earth from Photometric Variability

Published 26 Jul 2020 in astro-ph.EP, astro-ph.IM, and stat.ME | (2007.13096v1)

Abstract: Photometric variability of a directly imaged exo-Earth conveys spatial information on its surface and can be used to retrieve a two-dimensional geography and axial tilt of the planet (spin-orbit tomography). In this study, we relax the assumption of the static geography and present a computationally tractable framework for dynamic spin-orbit tomography applicable to the time-varying geography. First, a Bayesian framework of static spin-orbit tomography is revisited using analytic expressions of the Bayesian inverse problem with a Gaussian prior. We then extend this analytic framework to a time-varying one through a Gaussian process in time domain, and present analytic expressions that enable efficient sampling from a full joint posterior distribution of geography, axial tilt, spin rotation period, and hyperparameters in the Gaussian-process priors. Consequently, it only takes 0.3 s for a laptop computer to sample one posterior dynamic map conditioned on the other parameters with 3,072 pixels and 1,024 time grids, for a total of $\sim 3 \times 106$ parameters. We applied our dynamic mapping method on a toy model and found that the time-varying geography was accurately retrieved along with the axial-tilt and spin rotation period. In addition, we demonstrated the use of dynamic spin-orbit tomography with a real multi-color light curve of the Earth as observed by the Deep Space Climate Observatory. We found that the resultant snapshots from the dominant component of a principle component analysis roughly captured the large-scale, seasonal variations of the clear-sky and cloudy areas on the Earth.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.