Papers
Topics
Authors
Recent
2000 character limit reached

Feynman checkers: towards algorithmic quantum theory

Published 25 Jul 2020 in math-ph, math.CO, math.MP, and math.NT | (2007.12879v2)

Abstract: We survey and develop the most elementary model of electron motion introduced by R$.$Feynman. In this game, a checker moves on a checkerboard by simple rules, and we count the turns. Feynman checkers are also known as a one-dimensional quantum walk or an Ising model at imaginary temperature. We solve mathematically a problem by R$.$Feynman from 1965, which was to prove that the discrete model (for large time, small average velocity, and small lattice step) is consistent with the continuum one. We study asymptotic properties of the model (for small lattice step and large time) improving the results by J$.$Narlikar from 1972 and by T$.$Sunada-T$.$Tate from 2012. For the first time we observe and prove concentration of measure in the small-lattice-step limit. We perform the second quantization of the model.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.