Papers
Topics
Authors
Recent
2000 character limit reached

The product formula for regularized Fredholm determinants

Published 25 Jul 2020 in math.SP | (2007.12834v3)

Abstract: For trace class operators $A, B \in \mathcal{B}1(\mathcal{H})$ ($\mathcal{H}$ a complex, separable Hilbert space), the product formula for Fredholm determinants holds in the familiar form [ {\det}{\mathcal{H}} ((I_{\mathcal{H}} - A) (I_{\mathcal{H}} - B)) = {\det}{\mathcal{H}} (I{\mathcal{H}} - A) {\det}{\mathcal{H}} (I{\mathcal{H}} - B). ] When trace class operators are replaced by Hilbert--Schmidt operators $A, B \in \mathcal{B}2(\mathcal{H})$ and the Fredholm determinant ${\det}{\mathcal{H}}(I_{\mathcal{H}} - A)$, $A \in \mathcal{B}1(\mathcal{H})$, by the 2nd regularized Fredholm determinant ${\det}{\mathcal{H},2}(I_{\mathcal{H}} - A) = {\det}{\mathcal{H}} ((I{\mathcal{H}} - A) \exp(A))$, $A \in \mathcal{B}2(\mathcal{H})$, the product formula must be replaced by [ {\det}{\mathcal{H},2} ((I_{\mathcal{H}} - A) (I_{\mathcal{H}} - B)) = {\det}{\mathcal{H},2} (I{\mathcal{H}} - A) {\det}{\mathcal{H},2} (I{\mathcal{H}} - B) \exp(- {\rm tr}(AB)). ] The product formula for the case of higher regularized Fredholm determinants ${\det}{\mathcal{H},k}(I{\mathcal{H}} - A)$, $A \in \mathcal{B}_k(\mathcal{H})$, $k \in \mathbb{N}$, $k \geq 2$, does not seem to be easily accessible and hence this note aims at filling this gap in the literature.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.