The product formula for regularized Fredholm determinants
Abstract: For trace class operators $A, B \in \mathcal{B}1(\mathcal{H})$ ($\mathcal{H}$ a complex, separable Hilbert space), the product formula for Fredholm determinants holds in the familiar form [ {\det}{\mathcal{H}} ((I_{\mathcal{H}} - A) (I_{\mathcal{H}} - B)) = {\det}{\mathcal{H}} (I{\mathcal{H}} - A) {\det}{\mathcal{H}} (I{\mathcal{H}} - B). ] When trace class operators are replaced by Hilbert--Schmidt operators $A, B \in \mathcal{B}2(\mathcal{H})$ and the Fredholm determinant ${\det}{\mathcal{H}}(I_{\mathcal{H}} - A)$, $A \in \mathcal{B}1(\mathcal{H})$, by the 2nd regularized Fredholm determinant ${\det}{\mathcal{H},2}(I_{\mathcal{H}} - A) = {\det}{\mathcal{H}} ((I{\mathcal{H}} - A) \exp(A))$, $A \in \mathcal{B}2(\mathcal{H})$, the product formula must be replaced by [ {\det}{\mathcal{H},2} ((I_{\mathcal{H}} - A) (I_{\mathcal{H}} - B)) = {\det}{\mathcal{H},2} (I{\mathcal{H}} - A) {\det}{\mathcal{H},2} (I{\mathcal{H}} - B) \exp(- {\rm tr}(AB)). ] The product formula for the case of higher regularized Fredholm determinants ${\det}{\mathcal{H},k}(I{\mathcal{H}} - A)$, $A \in \mathcal{B}_k(\mathcal{H})$, $k \in \mathbb{N}$, $k \geq 2$, does not seem to be easily accessible and hence this note aims at filling this gap in the literature.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.