Papers
Topics
Authors
Recent
2000 character limit reached

Multi-view adaptive graph convolutions for graph classification (2007.12450v1)

Published 24 Jul 2020 in cs.CV and cs.LG

Abstract: In this paper, a novel multi-view methodology for graph-based neural networks is proposed. A systematic and methodological adaptation of the key concepts of classical deep learning methods such as convolution, pooling and multi-view architectures is developed for the context of non-Euclidean manifolds. The aim of the proposed work is to present a novel multi-view graph convolution layer, as well as a new view pooling layer making use of: a) a new hybrid Laplacian that is adjusted based on feature distance metric learning, b) multiple trainable representations of a feature matrix of a graph, using trainable distance matrices, adapting the notion of views to graphs and c) a multi-view graph aggregation scheme called graph view pooling, in order to synthesise information from the multiple generated views. The aforementioned layers are used in an end-to-end graph neural network architecture for graph classification and show competitive results to other state-of-the-art methods.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com