Papers
Topics
Authors
Recent
Search
2000 character limit reached

Convergence Rates of Inertial Primal-Dual Dynamical Methods for Separable Convex Optimization Problems

Published 24 Jul 2020 in math.OC | (2007.12428v1)

Abstract: In this paper, we propose a second-order continuous primal-dual dynamical system with time-dependent positive damping terms for a separable convex optimization problem with linear equality constraints. By the Lyapunov function approach, we investigate asymptotic properties of the proposed dynamical system as the time $t\to+\infty$. The convergence rates are derived for different choices of the damping coefficients. We also show that the obtained results are robust under external perturbations.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.