Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
81 tokens/sec
Gemini 2.5 Pro Premium
47 tokens/sec
GPT-5 Medium
22 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
88 tokens/sec
DeepSeek R1 via Azure Premium
79 tokens/sec
GPT OSS 120B via Groq Premium
459 tokens/sec
Kimi K2 via Groq Premium
192 tokens/sec
2000 character limit reached

Frequency Domain-based Perceptual Loss for Super Resolution (2007.12296v1)

Published 23 Jul 2020 in eess.IV and cs.CV

Abstract: We introduce Frequency Domain Perceptual Loss (FDPL), a loss function for single image super resolution (SR). Unlike previous loss functions used to train SR models, which are all calculated in the pixel (spatial) domain, FDPL is computed in the frequency domain. By working in the frequency domain we can encourage a given model to learn a mapping that prioritizes those frequencies most related to human perception. While the goal of FDPL is not to maximize the Peak Signal to Noise Ratio (PSNR), we found that there is a correlation between decreasing FDPL and increasing PSNR. Training a model with FDPL results in a higher average PSRN (30.94), compared to the same model trained with pixel loss (30.59), as measured on the Set5 image dataset. We also show that our method achieves higher qualitative results, which is the goal of a perceptual loss function. However, it is not clear that the improved perceptual quality is due to the slightly higher PSNR or the perceptual nature of FDPL.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)