Papers
Topics
Authors
Recent
Search
2000 character limit reached

Reinforcement Learning with Fast Stabilization in Linear Dynamical Systems

Published 23 Jul 2020 in cs.LG, math.OC, and stat.ML | (2007.12291v2)

Abstract: In this work, we study model-based reinforcement learning (RL) in unknown stabilizable linear dynamical systems. When learning a dynamical system, one needs to stabilize the unknown dynamics in order to avoid system blow-ups. We propose an algorithm that certifies fast stabilization of the underlying system by effectively exploring the environment with an improved exploration strategy. We show that the proposed algorithm attains $\tilde{\mathcal{O}}(\sqrt{T})$ regret after $T$ time steps of agent-environment interaction. We also show that the regret of the proposed algorithm has only a polynomial dependence in the problem dimensions, which gives an exponential improvement over the prior methods. Our improved exploration method is simple, yet efficient, and it combines a sophisticated exploration policy in RL with an isotropic exploration strategy to achieve fast stabilization and improved regret. We empirically demonstrate that the proposed algorithm outperforms other popular methods in several adaptive control tasks.

Citations (31)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.