Papers
Topics
Authors
Recent
Search
2000 character limit reached

On the Positive Geometry of Quartic Interactions III : One Loop Integrands from Polytopes

Published 23 Jul 2020 in hep-th, math-ph, and math.MP | (2007.12145v1)

Abstract: Building on the seminal work of Arkani-Hamed, He, Salvatori and Thomas (AHST), we explore the positive geometry encoding one loop scattering amplitude for quartic scalar interactions. We define a new class of combinatorial polytopes that we call pseudo-accordiohedra whose poset structures are associated to singularities of the one loop integrand associated to scalar quartic interactions. Pseudo-accordiohedra parametrize a family of projective forms on the abstract kinematic space defined by AHST and restriction of these forms to the type-D associahedra can be associated to one-loop integrands for quartic interactions. The restriction (of the projective form) can also be thought of as a canonical top form on certain geometric realisations of pseudo-accordiohedra. Our work explores a large class of geometric realisations of the type-D associahedra which include all the AHST realisations. These realisations are based on the pseudo-triangulation model for type-D cluster algebras discovered by Ceballos and Pilaud.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.