Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Detecting the Insider Threat with Long Short Term Memory (LSTM) Neural Networks (2007.11956v1)

Published 20 Jul 2020 in cs.CR and cs.LG

Abstract: Information systems enable many organizational processes in every industry. The efficiencies and effectiveness in the use of information technologies create an unintended byproduct: misuse by existing users or somebody impersonating them - an insider threat. Detecting the insider threat may be possible if thorough analysis of electronic logs, capturing user behaviors, takes place. However, logs are usually very large and unstructured, posing significant challenges for organizations. In this study, we use deep learning, and most specifically Long Short Term Memory (LSTM) recurrent networks for enabling the detection. We demonstrate through a very large, anonymized dataset how LSTM uses the sequenced nature of the data for reducing the search space and making the work of a security analyst more effective.

Citations (2)

Summary

We haven't generated a summary for this paper yet.