Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A binary-response regression model based on support vector machines (2007.11902v1)

Published 23 Jul 2020 in stat.ME

Abstract: The soft-margin support vector machine (SVM) is a ubiquitous tool for prediction of binary-response data. However, the SVM is characterized entirely via a numerical optimization problem, rather than a probability model, and thus does not directly generate probabilistic inferential statements as outputs. We consider a probabilistic regression model for binary-response data that is based on the optimization problem that characterizes the SVM. Under weak regularity assumptions, we prove that the maximum likelihood estimate (MLE) of our model exists, and that it is consistent and asymptotically normal. We further assess the performance of our model via simulation studies, and demonstrate its use in real data applications regarding spam detection and well water access.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.