Inner Models from Extended Logics: Part 2
Abstract: We introduce a new inner model $C(aa)$ arising from stationary logic. We show that assuming a proper class of Woodin cardinals, or alternatively $MM{++}$, the regular uncountable cardinals of $V$ are measurable in the inner model $C(aa)$, the theory of $C(aa)$ is (set) forcing absolute, and $C(aa)$ satisfies CH. We introduce an auxiliary concept that we call club determinacy, which simplifies the construction of $C(aa)$ greatly but may have also independent interest. Based on club determinacy, we introduce the concept of aa-mouse which we use to prove CH and other properties of the inner model $C(aa)$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.