A property in vector-valued function spaces
Abstract: This paper deals with a property which is equivalent to generalised-lushness for separable spaces. It thus may be seemed as a geometrical property of a Banach space which ensures the space to have the Mazur-Ulam property. We prove that if a Banach space $X$ enjoys this property if and only if $C(K,X)$ enjoys this property. We also show the same result holds for $L_\infty(\mu,X)$ and $L_1(\mu,X)$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.