Papers
Topics
Authors
Recent
2000 character limit reached

Buffer Pool Aware Query Scheduling via Deep Reinforcement Learning (2007.10568v3)

Published 21 Jul 2020 in cs.DB and cs.LG

Abstract: In this extended abstract, we propose a new technique for query scheduling with the explicit goal of reducing disk reads and thus implicitly increasing query performance. We introduce SmartQueue, a learned scheduler that leverages overlapping data reads among incoming queries and learns a scheduling strategy that improves cache hits. SmartQueue relies on deep reinforcement learning to produce workload-specific scheduling strategies that focus on long-term performance benefits while being adaptive to previously-unseen data access patterns. We present results from a proof-of-concept prototype, demonstrating that learned schedulers can offer significant performance improvements over hand-crafted scheduling heuristics. Ultimately, we make the case that this is a promising research direction at the intersection of machine learning and databases.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.