Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

On New Families of Fractional Sobolev Spaces (2007.10245v1)

Published 12 Jul 2020 in math.FA

Abstract: This paper presents three new families of fractional Sobolev spaces and their accompanying theory in one-dimension. The new construction and theory are based on a newly developed notion of weak fractional derivatives, which are natural generalizations of the well-established integer order Sobolev spaces and theory. In particular, two new families of one-sided fractional Sobolev spaces are introduced and analyzed, they reveal more insights about another family of so-called symmetric fractional Sobolev spaces. Many key theorems/properties, such as density/approximation theorem, extension theorems, one-sided trace theorem, and various embedding theorems and Sobolev inequalities in those Sobolev spaces are established. Moreover, a few relationships with existing fractional Sobolev spaces are also discovered. The results of this paper lay down a solid theoretical foundation for systematically developing a fractional calculus of variations theory and a fractional PDE theory as well as their numerical solutions in subsequent works. This paper is a concise presentation of the materials of Sections 1, 4 and 5 of reference [7].

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.