Papers
Topics
Authors
Recent
2000 character limit reached

"Self-Wiener" Filtering: Data-Driven Deconvolution of Deterministic Signals (2007.10164v2)

Published 20 Jul 2020 in eess.SP and stat.AP

Abstract: We consider the problem of robust deconvolution, and particularly the recovery of an unknown deterministic signal convolved with a known filter and corrupted by additive noise. We present a novel, non-iterative data-driven approach. Specifically, our algorithm works in the frequency-domain, where it tries to mimic the optimal unrealizable non-linear Wiener-like filter as if the unknown deterministic signal were known. This leads to a threshold-type regularized estimator, where the threshold at each frequency is determined in a data-driven manner. We perform a theoretical analysis of our proposed estimator, and derive approximate formulas for its Mean Squared Error (MSE) at both low and high Signal-to-Noise Ratio (SNR) regimes. We show that in the low SNR regime our method provides enhanced noise suppression, and in the high SNR regime it approaches the optimal unrealizable solution. Further, as we demonstrate in simulations, our solution is highly suitable for (approximately) bandlimited or frequency-domain sparse signals, and provides a significant gain of several dBs relative to other methods in the resulting MSE.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.