Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Differentially Private Mechanisms for Count Queries (2007.09374v1)

Published 18 Jul 2020 in cs.IT and math.IT

Abstract: In this paper, we consider the problem of responding to a count query (or any other integer-valued queries) evaluated on a dataset containing sensitive attributes. To protect the privacy of individuals in the dataset, a standard practice is to add continuous noise to the true count. We design a differentially-private mechanism which adds integer-valued noise allowing the released output to remain integer. As a trade-off between utility and privacy, we derive privacy parameters $\eps$ and $\delta$ in terms of the the probability of releasing an erroneous count under the assumption that the true count is no smaller than half the support size of the noise. We then numerically demonstrate that our mechanism provides higher privacy guarantee compared to the discrete Gaussian mechanism that is recently proposed in the literature.

Citations (5)

Summary

We haven't generated a summary for this paper yet.