Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Learning of High-Order Interactions for Protein Interface Prediction (2007.09334v1)

Published 18 Jul 2020 in cs.LG, q-bio.MN, and stat.ML

Abstract: Protein interactions are important in a broad range of biological processes. Traditionally, computational methods have been developed to automatically predict protein interface from hand-crafted features. Recent approaches employ deep neural networks and predict the interaction of each amino acid pair independently. However, these methods do not incorporate the important sequential information from amino acid chains and the high-order pairwise interactions. Intuitively, the prediction of an amino acid pair should depend on both their features and the information of other amino acid pairs. In this work, we propose to formulate the protein interface prediction as a 2D dense prediction problem. In addition, we propose a novel deep model to incorporate the sequential information and high-order pairwise interactions to perform interface predictions. We represent proteins as graphs and employ graph neural networks to learn node features. Then we propose the sequential modeling method to incorporate the sequential information and reorder the feature matrix. Next, we incorporate high-order pairwise interactions to generate a 3D tensor containing different pairwise interactions. Finally, we employ convolutional neural networks to perform 2D dense predictions. Experimental results on multiple benchmarks demonstrate that our proposed method can consistently improve the protein interface prediction performance.

Citations (51)

Summary

We haven't generated a summary for this paper yet.